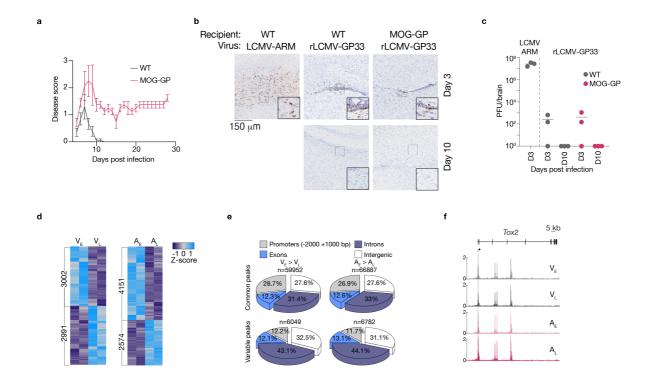
Supplementary information

Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling

Authors

Nicolas Page¹, Sylvain Lemeille¹, Ilena Vincenti¹, Bogna Klimek¹, Alexandre Mariotte¹, Ingrid Wagner¹, Giovanni Di Liberto¹, Jonathan Kaye², Doron Merkler^{1,3,*}

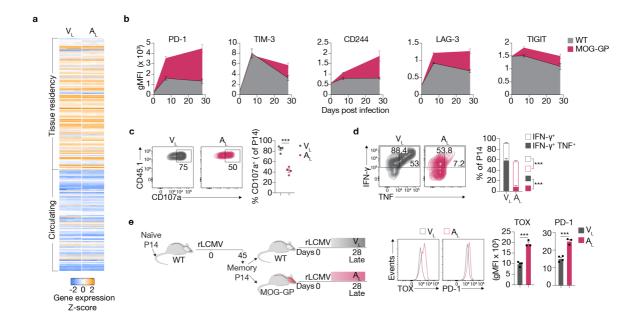
Affiliations


¹ Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland

² Research Division of Immunology, Departments of Biomedical Sciences and Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA

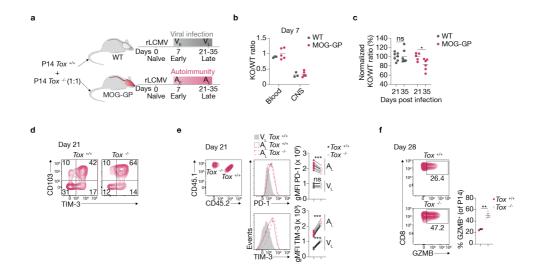
³Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland

*Corresponding author


Email: doron.merkler@unige.ch

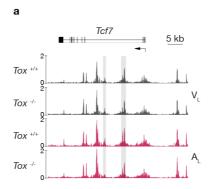
Supplementary Fig. 1 Chromatin accessibility changes in self-reactive CD8+ T cells

 10^4 naïve P14 cells were adoptively transferred into WT and MOG-GP mice. One day later (day 0), mice were challenged i.c. with 10^4 PFU rLCMV-GP33. Brain infiltrating P14 cells were submitted to ATAC-seq 7 (V_E and A_E) and 21 (V_L and A_L) days after i.c. infection.


- (a) EAE disease course (n = 10 WT mice and n= 9 MOG-GP mice), clinical scores are expressed as mean \pm SEM.
- (b) Brain sections of indicated experimental groups stained for LCMV-NP antigen.
- (c) Viral titer determination in the brain of indicated experimental groups (n = 3 mice/group). Horizontal lines indicate the mean.
- (d) Heatmap of the ATAC-seq Z-score of significantly differentially accessible ChARs in the comparisons (V_E versus V_L) and (A_E versus A_L). Variable peaks: (Log_2 FC \geq 1; FDR < 0.05).
- (e) Pie charts showing the distribution for common and variably accessible peaks within promoters, exons, introns and intergenic regions in the comparisons (V_E versus V_L) and (A_E versus A_L). Variable peaks: ($Log_2 FC \ge 1$; $FDR \le 0.05$).
- (f) ATAC-seq track of Tox2 locus for V_E , V_L , A_E and A_L . Differentially accessible ChARs (FDR < 0.05) are highlighted in grey. Source data are provided as a Source Data file.

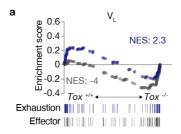
Supplementary Fig. 2 Self-reactive CD8+ T cells display a tissue-residency core signature and express exhaustion-associated markers

10⁴ naïve P14 cells were adoptively transferred into WT and MOG-GP mice. One day later (day 0), mice were challenged i.c. with 10⁴ PFU rLCMV-GP33. Brain infiltrating P14 cells were isolated for RNA-seq at day 21 after i.c. infection (a) and flow cytometric analysis at indicated days post infection (b-d).


- (a) Heatmap showing the relative expression of transcripts belonging to core residency and core circulating program 1 in V_L and A_L P14 cells.
- (**b**) Kinetic of inhibitory receptor expression in brain infiltrating P14 cells isolated from WT and MOG-GP mice (n = 3 mice/group at day 7 and n = 4 mice/group at day 28).
- (c) Frequency of CD107a+ degranulating V_L and A_L cells after *in vitro* stimulation with KAVYNFATC peptide. Representative flow cytometry histograms (left) and summary data (right) (n = 4 mice/group; p = 0.0001).
- (d) Intracellular staining for IFN- γ and TNF V_L (n = 3 mice) and A_L (n = 4 mice) cells at day 28 post-infection after *in vitro* stimulation with KAVYNFATC peptide. Numbers indicate the frequency of cytokine producing cells within each quadrant. Representative flow cytometry plots (left) and summary data (right). IFN- γ ⁺ (p = 0.0002); IFN- γ ⁺ + TNF (p < 0.0001).
- (e) C57BL/6 hosts received P14 cells and were infected intravenously (i.v.) with rLCMV-GP33. 10^4 memory P14 cells isolated from the spleen 45 days after infection were transferred into WT (n = 4) and MOG-GP (n= 3) mice. One day later (day 0), mice were challenged i.c. with 10^4 PFU rLCMV-GP33. Brain infiltrating P14 cells were isolated for flow cytometric analysis of TOX (p = 0.0001) and PD-1 (p = 0.0005) expression at 28 days post infection in V_L and A_L. Experimental scheme (left) and FACS histograms and summary data (right). gMFI: geometric mean fluorescence intensity.
- *** $p \le 0.001$ (two-tailed unpaired t test for c-e). Data are representative of at least 2 independent experiments (b-e). Bars and horizontal lines represent mean \pm SEM. Source data are provided as a Source Data file.

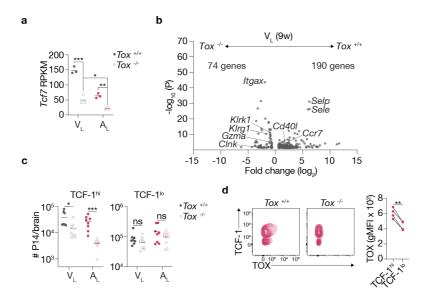
Supplementary Fig. 3 Cell intrinsic effect of TOX on self-reactive CD8+ T cell persistence and exhaustion phenotype

 10^4 naïve $Tox^{+/+}$ and $Tox^{-/-}$ P14 cells were adoptively transferred at 1:1 ratio into WT and MOG-GP mice. One day later (day 0), mice were challenged i.c. with 10^4 PFU rLCMV-GP33. P14 cells were analyzed at day 7 (b), day 21/35 (c), and day 21 (e) after infection for flow cytometric analysis.


- (a) Experimental scheme.
- (**b**) Ratios of $Tox^{-1/2}/Tox^{+/2}$ P14 cells in the blood and the brain 7 days after rLCMV-GP33 infection (n = 3 WT mice and n = 5 MOG-GP mice).
- (c) Normalized ratios of $Tox^{-1/2}Tox^{+1/4}$ P14 cells recovered from the brain between day 21(n = 7 WT mice; n = 5 MOG-GP mice) to 35 (n = 7 WT mice; n = 6 MOG-GP mice) after infection. The ratios of $Tox^{-1/2}Tox^{+1/4}$ P14 cells recovered at day 21 after infection were set up at 100% for each group. WT (p = 0.9745); MOG-GP (p = 0.0285).
- (d) 10⁴ naïve *Tox* +/+ or *Tox* -/- P14 cells were adoptively transferred into MOG-GP mice. One day later (day 0), mice were challenged i.c. with 10⁴ PFU rLCMV-GP33. Brain infiltrating P14 cells were isolated at 21 days post infection for flow cytometric analysis of CD103 and TIM-3 expression.
- (e) Expression of PD-1 and TIM-3 in $Tox^{+/+}$ and $Tox^{-/-}$ A_L and V_L P14 cells. Gating strategy and representative flow cytometry histograms (left) and summary data (right) (n = 8 mice/group). PD-1 (A_L , p < 0.0001; V_L , p = 0.2672); TIM-3 (A_L , p < 0.0001; V_L , p < 0.0001).
- (f) 10^4 naïve $Tox^{+/+}$ or $Tox^{-/-}$ P14 cells were adoptively transferred into MOG-GP mice. One day later (day 0), mice were challenged i.c. with 10^4 PFU rLCMV-GP33. Brain infiltrating P14 cells were isolated at 28 days post infection for flow cytometric analysis of granzyme B expression. Representative flow cytometry plots (left) and summary data (right) (n = 3 mice/group; p = 0.0035). Horizontal lines represent mean \pm SEM.
- ns, not significant; *p \leq 0.05; **p \leq 0.01; ***p \leq 0.001 (two-tailed unpaired t test for c, f and two-tailed paired t test for e). Data are representative of at least 2 independent experiments (e-f). Source data are provided as a Source Data file.

Supplementary Fig. 4 TOX epigenetically remodels *Tcf7* locus in self-reactive CD8+ T cells

10⁴ naïve *Tox* +/+ or *Tox* -/- P14 cells were adoptively transferred into WT and MOG-GP mice. One day later (day 0), mice were challenged i.c. with 10⁴ PFU rLCMV-GP33. Brain infiltrating P14 cells were FACS sorted and submitted to ATAC-seq 21 days later.


(a) ATAC-seq track of Tcf7 locus for $Tox^{+/+}$ and $Tox^{-/-}$ V_L and A_L P14 cells. Differentially accessible ChARs (FDR \leq 0.05) are highlighted in grey.

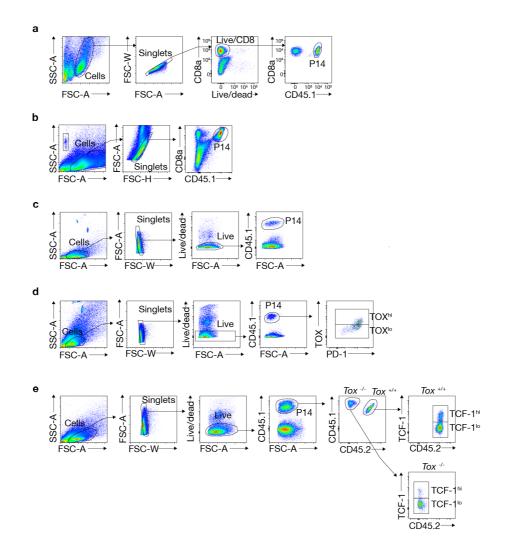
Supplementary Fig. 5 TOX controls the expression of effector associated genes in CD8+ T cells

10⁴ naïve *Tox* ^{+/+} or *Tox* ^{-/-} P14 cells were adoptively transferred into WT mice. One day later (day 0), mice were challenged i.c. with 10⁴ PFU rLCMV-GP33. Brain infiltrating P14 cells were FACS sorted for RNA-seq 21 days later.

(a) GSEA of a signature of exhaustion and effector differentiation 2 in a ranked list of genes differentially expressed by $Tox^{+/+}$ versus $Tox^{-/-}V_L$ cells. NES: normalized enrichment score.

Supplementary Fig. 6 TOX predominantly preserves the pool of self-reactive TCF-1^{hi} CD8+ T cells

10⁴ naïve *Tox* +/+ or *Tox* -/- P14 cells were adoptively transferred into WT and MOG-GP mice. One day later (day 0), mice were challenged i.c. with 10⁴ PFU rLCMV-GP33 and brain infiltrating P14 cells were isolated for RNA-seq (a-b) or FACS analysis (c-d) 3 weeks after infection.


- (a) RPKM values of Tcf7 in $Tox^{+/+}$ versus $Tox^{-/-}$ V_L and A_L (n = 3 mice/group). Horizontal lines represent the mean. $Tox^{+/+}$ versus $Tox^{-/-}$ V_L (p < 0.0001); $Tox^{+/+}$ versus $Tox^{-/-}$ A_L (p = 0.0051); $Tox^{-/-}$ V_L versus $Tox^{-/-}$ A_L (p = 0.0415).
- (**b**)10⁴ naïve $Tox^{+/+}$ or $Tox^{-/-}$ P14 cells were adoptively transferred into WT mice. One day later (day 0), mice were challenged i.c. with 10⁴ PFU rLCMV-GP33 and brain infiltrating P14 cells were isolated for RNA-seq analysis at 9 weeks after infection.

Volcano plot of differentially expressed genes (DEGs) (FC \geq 1.5; FDR < 0.05) in $Tox^{+/+}$ versus $Tox^{-/-}$ V_L cells at 9 weeks after infection (n = 3 mice/group).

- (c) Enumeration of TCF-1^{hi} and TCF-1^{lo} in V_L ($Tox^{+/+}$, n=8; $Tox^{-/-}$, n=9) and A_L ($Tox^{+/+}$, n=8; $Tox^{-/-}$, n=9) cells. TCF-1^{hi} (V_L , p=0.0206; A_L , p=0.0003); TCF-1^{lo} (V_L , p=0.2313; A_L , p=0.1933). Horizontal lines represent the mean.
- (d) TOX expression in TCF-1^{hi} and TCF-1^{lo} subsets of A_L cells. Representative flow cytometry plots (left; $Tox^{-/-}$ P14 cells were included as control staining) and summary data (right) (n = 4 mice/group; p = 0.0026).

ns, not significant; *p \leq 0.05; **p \leq 0.01; ***p \leq 0.001 (one-way ANOVA with Tukey's post-test for a and two-tailed unpaired t test for c and two-tailed paired t test for d).

Data represent the pool of 2 independent experiments (c) or are representative of at least 2 independent experiments (d). Source data are provided as a Source Data file.

Supplementary Fig. 7 Gating strategies used for cell sorting and phenotyping of P14 cells

- (a) Gating strategy used to sort brain infiltrating P14 cells for ATAC-seq and RNA-seq analysis presented in Fig. 1, 2a-d, 4, 5, 6a, 6c and Supp. Fig. 1d-f, 2a, 4, 5, 6a-b.
- (b) Gating strategy used to investigate the phenotype (Fig. 2e, 3e, Supp. Fig. 2b-d, 3f, 6d) and the number (Fig. 3a) of brain infiltrating P14 cells in WT and MOG-GP mice.
- (c) Gating strategy used to determine the percentage and absolute counts of TCF-1^{hi} versus TCF-1^{lo} P14 cells (Fig. 6b and Supp. Fig. 6c) or protein expression in brain infiltrating P14 cells (Fig. 2f, 3b-d, Supp. Fig. 2e, 3d).
- (d) Gating strategy used to stratify marker expression on TOX^{hi} and TOX^{lo} P14 cells as presented in Fig. 2g.
- (e) Gating strategy used to phenotype congenically distinct P14 cells in co-transfer experiment (Fig. 2e). The same strategy was used to additionally stratify co-transferred P14 cells based on TCF-1 expression (Fig. 6d).

Ad1_noMX	AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG
Ad2.1_TAAGGCGA	CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGT
Ad2.2_CGTACTAG	CAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT
Ad2.3_AGGCAGAA	CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT
Ad2.4_TCCTGAGC	CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT
Ad2.5_GGACTCCT	CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT
Ad2.6_TAGGCATG	CAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT
Ad2.7_CTCTCTAC	CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGT
Ad2.8_CAGAGAGG	CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGGAGATGT

Supplementary Table 1 Nextera indexed primers used for ATAC-seq library amplification

Supplementary References

- 1. Milner, J.J. et al. Runx3 programs CD8(+) T cell residency in non-lymphoid tissues and tumours. Nature 552, 253-257 (2017).
- 2. Doering, T.A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130-1144 (2012).